O‘zbekiston Respublikasi kardiologiya xizmatida Neuromed AI tibbiy qarorlarni qo‘llab-quvvatlash tizimini joriy etishning afzalliklari va xavflari.
Annotatsiya
Annotatsiya:
Maqsad. Kardiologlarning muntazam vazifalarini avtomatlashtirish va tibbiy yordam sifatini yaxshilash uchun mo'ljallangan NeuromedAI Cardio intellektual tizimining klinik sinovi;
Materiallar va usullar. Tadqiqotda NeuromedAI Cardio intellektual tizimi va tizimning shifokorlar uchun potentsial afzalliklarini ekspert baholashga qaratilgan 28 ta savolni o'z ichiga olgan anketadan foydalanildi. Anketa tizimga qo'yiladigan asosiy talablarni aniqlashga, shuningdek, modelni takomillashtirish bo'yicha tavsiyalarni shakllantirishga yordam berdi. Xususan, javoblarning aniqligini oshirish maqsadida oʻquv maʼlumotlar majmuasini boyitish va modelni yanada oʻrgatish yoʻnalishlari belgilandi;
Natijalar. Neuromed AI Cardio tizimining 2024-yilda o‘tkazilgan pilot tadqiqoti doirasida 21 nafar kardiolog o‘rtasida anonim so‘rovnoma tashkil etildi. Ishtirokchilarning o'rtacha tajribasi 17 ± 11,1 yilni tashkil etdi. Anketalar tahlili shuni ko'rsatdiki, tizim bilan o'zaro hamkorlikda mutaxassislar tomonidan jami 400 ta savol berildi, bu texnologiyaga yuqori qiziqish va uni professional muhitda faol sinovdan o'tkazishdan dalolat beradi;
Xulosa. Olingan natijalar asosida tizimni O‘zbekiston Respublikasida birlamchi tibbiy-sanitariya yordami amaliyotiga joriy etish uchun moslashtirish bo‘yicha tavsiyalar ishlab chiqish rejalashtirilgan. Moslashtirilgan tizim birlamchi bosqichda tashxis qo‘yishning aniqligi va davolash samaradorligini oshirishi kutilmoqda, bu esa aholi salomatligini saqlashning asosiy ko‘rsatkichlari yaxshilanishida o‘z aksini topadi va tibbiyot xodimlarining ijobiy fikrlarini bildiradi.
Mualliflar haqida
Adabiyotlar ro'yxati
M. Lindstrom, «Global Burden of Cardiovascular Diseases and Risks Collaboration, 1990-2021», J Am Coll Cardiol, т. 80, issue. 25, сс. 2372–2425, Dec. 2022, https://doi.org/10.1016/j.jacc.2022.11.001.
F. L. J. Visseren, «2021 ESC Guidelines on cardiovascular disease prevention in clinical practice», Eur Heart J, т. 42, issue. 34, сс. 3227–3337, september. 2021, https://doi.org/10.1093/eurheartj/ehab484.
K. Kotseva, «Lifestyle and impact on cardiovascular risk factor control in coronary patients across 27 countries: Results from the European Society of Cardiology ESC-EORP EUROASPIRE V registry», Eur J Prev Cardiol, т. 26, issue. 8, сс. 824–835, May 2019, https://doi.org/10.1177/2047487318825350.
M. J. Boonstra, D. Weissenbacher, J. H. Moore, G. Gonzalez-Hernandez, and F. W. Asselbergs, «Artificial intelligence: revolutionizing cardiology with large language models», Eur Heart J, т. 45, issue. 5, сс. 332–345, February. 2024, https://doi.org/10.1093/eurheartj/ehad838.
Perepech NB, Tregubov AV, Mikhaylova IE. Analysis of factors influencing physicians’ knowledge of clinical guidelines for treating chronic heart failure. Russian Journal of Cardiology. 2024;29(1S):Art. 1S. https://doi.org/10.15829/1560-4071-2024-5722. In Russian: Н. Б. Перепеч, А. В. Трегубов, и И. Е. Михайлова, «Анализ факторов, влияющих на знание врачами положений клинических рекомендаций по лечению хронической сердечной недостаточности», Российский кардиологический журнал, т. 29, вып. 1S, Art. вып. 1S, фев. 2024, https://doi.org/10.15829/1560-4071-2024-5722.
S. Parsa, S. Somani, R. Dudum, S. S. Jain, and F. Rodriguez, «Artificial Intelligence in Cardiovascular Disease Prevention: Is it Ready for Prime Time?», Curr Atheroscler Rep, т. 26, issue. 7, сс. 263–272, Jul. 2024, https://doi.org/10.1007/s11883-024-01210-w.
E. K. Oikonomou and R. Khera, «Artificial intelligence-enhanced patient evaluation: bridging art and science», Eur Heart J, т. 45, issue. 35, сс. 3204–3218, september. 2024, https://doi.org/10.1093/eurheartj/ ehae415.
A. Nolin-Lapalme, «Maximising Large Language Model Utility in Cardiovascular Care: A Practical Guide», Can J Cardiol, т. 40, issue. 10, сс. 1774–1787, Oct. 2024, https://doi.org/10.1016/j.cjca.2024.05.024.
A. J. Thirunavukarasu, D. S. J. Ting, K. Elangovan, L. Gutierrez, T. F. Tan, и D. S. W. Ting, «Large language models in medicine», Nat Med, т. 29, issue. 8, сс. 1930–1940, Aug. 2023, https://doi.org/10.103 8/s41591-023-02448-8.
H. Ji, «Large language model comparisons between English and Chinese query performance for cardiovascular prevention», Commun Med, т. 5, issue. 1, сс. 1–8, May 2025, https://doi.org/10.1038/s43856-025-00802-0.
S. Law, B. Oldfield, W. Yang, and Global Obesity Collaborative, «ChatGPT/GPT-4 (large language models): Opportunities and challenges of perspective in bariatric healthcare professionals», Obes Rev, т. 25, issue. 7, с. e13746, Jul. 2024, https://doi.org/10.1111/obr.13746.
Y. Kaneda, «Assessing the Performance of GPT-3.5 and GPT-4 on the 2023 Japanese Nursing Examination», Cureus, т. 15, вып. 8, с. e42924, авг. 2023, https://doi.org/10.7759/cureus.42924.
T. K. W. Hung, «Performance of Retrieval-Augmented Large Language Models to Recommend Head and Neck Cancer Clinical Trials», J Med Internet Res, т. 26, с. e60695, окт. 2024, https://doi.org/10.2196/60 695.
L. Y. Jiang, «Health system-scale language models are all-purpose prediction engines», Nature, т. 619, вып. 7969, сс. 357–362, июл. 2023, https://doi.org/10.1038/s41586-023-06160-y.
«(PDF) Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications», ResearchGate, https://doi.org/10.1109/JPROC.2021.3060483.
A. Nolin-Lapalme, «Maximising Large Language Model Utility in Cardiovascular Care: A Practical Guide», Can J Cardiol, т. 40, вып. 10, сс. 1774–1787, окт. 2024, https://doi.org/10.1016/j.cjca.2024.05.024.
E. Goh, «Large Language Model Influence on Diagnostic Reasoning: A Randomized Clinical Trial», JAMA Netw Open, т. 7, вып. 10, с. e2440969, окт. 2024, https://doi.org/10.1001/jamanetworkopen.2024.40969.
«9781003539483 | PDF | Artificial Intelligence | Intelligence (AI) Semantics». Просмотрено: 11 июнь 2025 г. [Онлайн]. Доступно на: https://ru.scribd.com/document/860159908/9781003539483.
Copyright (c) 2025 Х.Г. Фозилов, Р.Х. Тригулова (Автор)

Ushbu asar saytida mavjud litsenziyalar Creative Commons «Attribution» (««Atribut») 4.0 Butun dunyo bo'ylab.