Epicardial fat as a prognostic marker in cardiovascular diseases
Abstract
The leading cause of death worldwide is cardiovascular disease. In addition to the known factors leading to CVD, in recent years much attention has been paid to obesity as one of the components of cardiometabolic syndrome. In this case, visceral obesity serves the development of various heart pathologies, leading to myocardial ischemia, the appearance of cardiac arrhythmias, as well as the progression or development of chronic heart failure. In addition to the typical sites of fatty tissue deposition, there is an area of accumulation that directly contributes to the progression of CVD - epicardial fat (EAT). Normally, EAT serves as a mechanical barrier and protects the heart from external influences. However, when it accumulates excessively, a meta-inflammatory process occurs, similar to that which develops in adipose tissue of any localization, leading to the release of proinflammatory cytokines and disruption of endothelial dysfunction, thereby being a trigger for destabilization.
About the Authors
List of references
Eriksen U.Christina, Rotar Olga, Toft Ulla, Jorgensen Torben, What is the effectiveness of systematic population-level screening programmes for reducing the burden of cardiovascular diseases?, WHO Regional Office for Europe, Copenhagen, 2021, 107.
Drapkina O.M., Ivashkin V.T., Abdominal pain, Russian Journal of Gastroenterology, Hepatology, Coloproctology, 2002, 12, 04, 8–15, In Russian: Драпкина О. М., Ивашкин В.Т. Абдоминальный болевой синдром. Российский Журнал Гастроэнтерологии, Гепатологии, Колопроктологии 2002;12(4):8–15.
Brook D.Robert, Obesity, weight loss, and vascular function, Endocrine, 2006, 29, 01, 21–25.
Tsao H.M., Hu W.C., Wu M.H., Quantitative analysis of quantity and distribution of epicardial adipose tissue surrounding the left atrium in patients with atrial fibrillation and effect of recurrence after ablation, American Journal of Cardiology, 2011, 107, 010, 1498–1503, 10.1016/j.amjcard.2011.01.027.
Wang Y., Lau W.B., Gao E., Tao L., Yuan, Y., Li R., Wang X., Koch W.J., Ma X.L., Cardiomyocyte- derived adiponectin is biologically active in protecting against myocardial ischemia-reperfusion injury, American Journal of Physiology-Endocrinology and Metabolism, 2010, 298, 03, 663–670, 10.1152/ajpen- do.00663.2009.
Nakanishi K., Fukuda S., Tanaka A., Persistent epicardial adipose tissue accumulation is associated with coronary plaque vulnerability and future acute coronary syndrome in non-obese subjects with coronary artery disease, Atherosclerosis, 2014, 237, 01, 353–360, 10.1016/j.atherosclerosis.2014.09.015.
Iacobellis G., Willens H.J., Echocardiographic epicardial fat: a review of research and clinical applications, Journal of the American Society of Echocardiography, 2009, 22, 012, 1311–1319, 10.1016/j.echo.2009.10.013.
Natale F., Tedesco M.A., Mocerino R., Visceral adiposity and arterial stiffness: echocardiographic epicar- dial fat thickness reflects, better than waist circumference, carotid arterial stiffness in a large population of hypertensives, European Journal of Echocardiography, 2009, 10, 04, 549–555, 10.1093/ejechocard/jep002.
Drapkina O.M., Shepel R.N., Deeva T.A., The thickness of the epicardial fat is the "visit card"of metabolic syndrome, Obesity and Metabolism, 2018, 15, 02, 29-34, 10.14341/omet9295.
Mustafina I.A., Ionin V.A., Dolganov A.A., Ishmetov V.Sh., Pushkareva A.E., Yagudin T.A., Danilko K.V., Zagidullin N.Sh., The role of epicardial adipose tissue in the development of cardiovascular diseases, Russian Journal of Cardiology, 2022, 27, 01S, 4872, In Russian: Мустафина И.А., Ионин В.А., Долганов А.А., Ишметов В.Ш., Пушкарева А.Э., Ягудин Т.А., Данилко К.В., Загидуллин Н.Ш. Роль эпикардиальной жировой ткани в развитии сердечно-сосудистых заболеваний. Российский кардиологический журнал 2022;27(1S):4872, 10.15829/1560-4071-2022-4872.
Ott A.V., Chumakova G.A., Epicardial obesity as one of the main criteria of metabolically obese phenotype and predictors of subclinical atherosclerosis, Complex Issues of Cardiovascular Diseases, 2018, 7, 01, 21- 28, In Russian: Отт А.В., Чумакова Г.А. Эпикардиальное ожирение как один из основных критериев метаболически тучного фенотипа ожирения и предикторов субклинического атеросклероза. Комплексные проблемы сердечно-сосудистых заболеваний 2018;7(1):21-28, 10.17802/2306-1278- 2018-7-1-21-28.
Rostamzade, A., Khademvatani K., Seyed Mohammadzadeh M.H., Association of epicardial fat thickness assessed by echocardiography with the severity of coronary artery disease, Journal of Cardiovascular and Thoracic Research, 2020, 12, 02, 114-119, 10.34172/jcvtr.2020.19.
Forouzandeh F., Chang S. M., Muhyieddeen K., Does quantifying epicardial and intrathoracic fat with noncontrast computed tomography improve risk stratification beyond calcium scoring alone?, Circulation: Cardiovascular Imaging, 2013, 6, 01, 58-66, 10.1161/CIRCIMAGING.112.976316.
Shibata R., Numaguchi Y., Matsushita K., Sone T., Kubota R., Ohashi T., Ishii M., Kihara S., Walsh K., Ouchi N., Murohara T., Usefulness of adiponectin to predict myocardial salvage following successful reperfusion in patients with acute myocardial infarction, American Journal of Cardiology, 2008, 101, 012, 1712-171, 10.1016/j.amjcard.2008.02.057.
Shibata R., Numaguchi Y., Matsushita K., Sone T., Kubota R., Ohashi T., Ishii M., Kihara S., Walsh K., Ouchi N., Murohara T., Usefulness of adiponectin to predict myocardial salvage following successful reperfusion in patients with acute myocardial infarction, American Journal of Cardiology, 2008, 101, 012, 1712-171, 10.1016/j.amjcard.2008.02.057.
Hess K., Marx N., Diabetes Stoffwechsel und Herz, Diabetes Stoffw. Herz, 2007, 16, 433-440.
Shvarts V., Adipose tissue inflammation. Part 1. Morphological and functional manifestations, Problems of Endocrinology, 2009, 55, 04, 44-49, 10.14341/probl200955444-49.
Erheule S., Tuyls E., Gharaviri A., Hulsmans S., van A.Hunnik, Kuiper M., Serroyen J., Zeemering S., Kuijpers N.H., Schotten U., Loss of continuity in the thin epicardial layer because of endomysial fibrosis increases the complexity of atrial fibrillatory conduction, Circulation: Arrhythmia and Electrophysiology, 2013, 6, 202–211, 10.1161/CIRCEP.112.975144.
Mazur E.S., Mazur V.V., Bazhenov N.D., Kolbasnicov S.V., Nilova O.V., Epicardial obesity and atrial fibril- lation: emphasis on atrial fat depot, Obesity and Metabolism, 2020, 17, 03, 316–325, 10.14341/omet12614.
Topuz M., Dogan A., The effect of epicardial adipose tissue thickness on left ventricular diastolic functions in patients with normal coronary arteries, Kardiologia Polska, 2017, 75, 03, 196–203, 10.5603/KP.a2016.0139.
Nyawo T.A., Dludla P.V., Mazibuko-Mbeje S.E., A systematic review exploring the significance of measuring epicardial fat thickness in correlation to B-type natriuretic peptide levels as prognostic and diagnostic markers in patients with or at risk of heart failure, Heart Failure Reviews, 2021, 10.1007/s10741- 021-10160-3.
Malavazos A.E., Di G.Leo, Secchi F., Relation of echocardiographic epicardial fat thickness and myocardial fat, American Journal of Cardiology, 2010, 105, 012, 1831-1835, 10.1016/j.amjcard.2010.01.368.
Erheule S., Tuyls E., Gharaviri A., Hulsmans S., van A.Hunnik, Kuiper M., Serroyen J., Zeemering S., Kuijpers N.H., Schotten U., Loss of continuity in the thin epicardial layer because of endomysial fibrosis increases the complexity of atrial fibrillatory conduction, Circulation: Arrhythmia and Electrophysiology, 2013, 6, 202-211, 10.1161/CIRCEP.112.975144.
Verhagen S.N., Visseren F.L., Perivascular adipose tissue: as a cause of atherosclerosis, Atherosclerosis, 2011, 214, 3-10, 10.1016/j.atherosclerosis.2010.05.034.[25] Uchida Y., Uchida Y., Shimoyama E., Hiruta N., Kishimoto T., Watanabe S., Pericoronary adipose tissue as storage and supply site for oxidized low-density lipoprotein in human coronary plaques, PLoS One, 2016, 11, 03, e0150862, 10.1371/journal.pone.0150862.
Lai Y.H., Yun C.H., Su C.H., Excessive interatrial adiposity is associated with left atrial remodeling, augmented contractile performance in asymptomatic population, Echo Research and Practice, 2016, 3, 01, 5-15, 10.1530/ERP-15-0031.
Lim H.E., Na J.O., Im S.I., Interatrial septal thickness as a marker of structural and functional remodeling of the left atrium in patients with atrial fibrillation, Korean Journal of Internal Medicine, 2015, 30, 06, 808, 10.3904/kjim.2015.30.6.808.
Cosansu K., Yilmaz S., Is epicardial fat thickness associated with acute ischemic stroke in pa- tients with atrial fibrillation?, Journal of Stroke and Cerebrovascular Diseases, 2020, 29, 07, 104900, 10.1016/j.jstrokecerebrovasdis.2020.104900.
Mahajan R., Lau D.H., Brooks A.G., Electrophysiological, electroanatomical, and structural remodeling of the atria as consequences of sustained obesity, Journal of the American College of Cardiology, 2015, 66, 01, 1-11, 10.1016/j.jacc.2015.04.058.
Choi E.K., Shen M.J., Han S., Intrinsic cardiac nerve activity and paroxysmal atrial tachyarrhythmia in ambulatory dogs, Circulation, 2010, 121, 024, 2615, 10.1161/CIRCULATIONAHA.109.920215.
Konishi M., Sugiyama S., Sato Y., Kusayama T., Furusho H., Kashiwagi H., Inflammation of left atrial epicardial adipose tissue is associated with paroxysmal atrial fibrillation, Journal of Cardiology, 2016, 68, 05, 406-411, 10.1016/j.jjcc.2015.11.005.
Ionin V.A., Listopad O.V., Nifontov S.E., The role of galectin-3 and epicardial fat in the development of atrial fibrillation in patients with metabolic syndrome, Uchenye Zapiski SPbGMU Imeni Akademika I.P. Pavlova, 2015, 22, 01, 43–46, 10.24884/1607-4181-2015-22-1-43-46, In Russian: Ионин В.А., Листопад
О.В., Нифонтов С.Е. и др. Роль галектина-3 и эпикардиального жира в развитии фибрилляции предсердий у пациентов при метаболическом синдроме.
Munger T.M., Dong Y.X., Masaki M., Electrophysiological and hemodynamic characteristics associated with obesity in patients with atrial fibrillation, Journal of the American College of Cardiology, 2012, 60, 09, 851–860, 10.1016/j.jacc.2012.03.042.
Nagashima K., Okumura Y., Watanabe I., Does location of epicardial adipose tissue correspond to endo- cardial high dominant frequency or complex fractionated atrial electrogram sites during atrial fibrillation, Circulation: Arrhythmia and Electrophysiology, 2012, 5, 04, 676, 10.1161/CIRCEP.112.975243.
Nakahara S., Hori Y., Kobayashi S., Epicardial adipose tissue-based defragmentation approach to persistent atrial fibrillation: Its impact on complex fractionated electrograms and ablation outcome, Heart Rhythm, 2014, 11, 08, 1343-1351, 10.1016/j.hrthm.2014.04.040.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.