The role of microRNA in the pathogenesis of atherosclerosis: new frontiers in research

https://doi.org/10.70626/3060-4850-2024-1-1-44-51
FULL TEXT:

Abstract

Background. Atherosclerosis is a leading cause of cardiovascular mortality worldwide, significantly impacting public health. microRNA, as key regulators of gene expression, play a crucial role in the pathogenesis of atherosclerosis, offering novel avenues for diagnostics and therapeutics.


Materials and methods. A review of contemporary literature was conducted to explore the link between non-coding molecules and atherosclerosis. Data from clinical studies identifying microRNA as potential biomarkers and therapeutic targets were included.


Results.The findings demonstrate that microRNA influence critical stages of atherosclerosis pathogenesis, such as inflammation, apoptosis, and lipid metabolism. Their use as diagnostic biomarkers enhances the early detection of atherosclerosis, while their therapeutic potential presents new opportunities for treatment.


Conclusion. MicroRNA represent a promising tool for managing cardiovascular diseases. Further research is necessary to develop effective diagnostic and therapeutic strategies.

About the Authors

List of references

Vaduganathan M., The Global Burden of Cardiovascular Diseases and Risk: A Compass for Future Health, J Am Coll Cardiol, 2022, 80, 025, 2361–2371, 10.1016/j.jacc.2022.09.003.

Libby P., Atherosclerosis, Nat Rev Dis Primers, 2019, 5, 01, 56, 10.1038/s41572-019-0106-z.

Bjorkegren J.L.M., Lusis A.J., Atherosclerosis: Recent developments, Cell, 2022, 185, 010, 1630–1645, 10.1016/j.cell.2022.03.029.

Landmesser U., From traditional pharmacological towards nucleic acid-based therapies for cardiovascular diseases, Eur Heart J, 2020, 41, 040, 3884–3899, 10.1093/eurheartj/ehaa759.

Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello C.C., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature, 1998, 391, 06669, 806–811, 10.1038/35888.

Kim V.N., Han J., Siomi M.C., Biogenesis of small RNAs in animals, Nat Rev Mol Cell Biol, 2009, 10, 02, 126–139, 10.1038/nrm2632.

Ha M., Kim V.N., Regulation of microRNA biogenesis, Nat Rev Mol Cell Biol, 2014, 15, 08, 509–524, 10.1038/nrm3838.

Lee R.C., Feinbaum R.L., Ambros V., The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, 1993, 75, 05, 843–854, 10.1016/0092-8674(93)90529-Y.

Roush S., Slack F.J., The let-7 family of microRNA, Trends Cell Biol, 2008, 18, 010, 505–516, 10.1016/j.tcb.2008.07.007.

Shah A.M., Giacca M., Small non-coding RNA therapeutics for cardiovascular disease, Eur Heart J, 2022, 43, 043, 4548–4561, 10.1093/eurheartj/ehac504.

[11] Christopher A.F., MicroRNA therapeutics: Discovering novel targets and developing specific therapy, Perspect Clin Res, 2016, 7, 02, 68–74, 10.4103/2229-3485.179431.

Friedman R.C., Farh K.K.H., Burge C.B., Bartel D.P., Most mammalian mRNAs are conserved targets of microRNA, Genome Res, 2009, 19, 01, 92–105, 10.1101/gr.082701.108.

Gabisonia K., MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs, Nature, 2019, 569, 07756, 418–422, 10.1038/s41586-019-1191-6.

Karakikes I., Therapeutic cardiac-targeted delivery of miR-1 reverses pressure overload-induced cardiac hypertrophy and attenuates pathological remodeling, J Am Heart Assoc, 2013, 2, 02, e000078, 10.1161/JAHA.112.000078.

Nagpal V., MiR-125b Is Critical for Fibroblast-to-Myofibroblast Transition and Cardiac Fibrosis, Circulation, 2016, 133, 03, 291–301, 10.1161/CIRCULATIONAHA.115.018531.

Lam J. K., siRNA Versus miRNA as Therapeutics for Gene Silencing, Mol Ther Nucleic Acids, 2015, 4, 09, e252, 10.1038/mtna.2015.23.

Romaine S.P., microRNA in cardiovascular disease: an introduction for clinicians, Heart, 2015, 101, 012, 921–928, 10.1136/heartjnl-2013-305402.

Dec A., Inclisiran—A Revolutionary Addition to a Cholesterol-Lowering Therapy, Int J Mol Sci, 2023, 24, 07, e7245, % If page number is available, replace "e7245"with the actual page range. 10.3390/ijms2407245

% Add DOI if available.

Hajar R., PCSK 9 Inhibitors: A Short History and a New Era of Lipid-lowering Therapy, Heart Views, 2019, 20, 02, 74–75, 10.4103/HEARTVIEWS.HEARTVIEWS_67_19.

Abifadel M., Mutations in PCSK9 cause autosomal dominant hypercholesterolemia, Nat Genet, 2003, 34, 02, 154–156, 10.1038/ng1161.

Kaddoura R., Orabi B., Salam A.M., PCSK9 Monoclonal Antibodies: An Overview, Heart Views, 2020, 21, 02, 97–103, 10.4103/HEARTVIEWS.HEARTVIEWS_93_20.

Cowart K., Singleton J., Carris N.W., Inclisiran for the Treatment of Hyperlipidemia and for Atherosclerotic Cardiovascular Disease Risk Reduction: A Narrative Review, Clin Ther, 2023, 45, 011, 1099–1104, 10.1016/j.clinthera.2023.07.014.

Glass C.K., Witztum J.L., Atherosclerosis: The Road Ahead, Cell, 2001, 104, 04, 503–516, 10.1016/S0092-8674(01)00238-0.

Esau C., miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting, Cell Metab, 2006, 3, 02, 87–98, 10.1016/j.cmet.2006.01.005.

Shao W., Espenshade P.J., Sterol regulatory element-binding protein (SREBP) cleavage regulates Golgi- to-endoplasmic reticulum recycling of SREBP cleavage-activating protein (SCAP), J Biol Chem, 2014, 289, 011, 7547–7557, 10.1074/jbc.M113.533240.

Yang M., Identification of miR-185 as a regulator of de novo cholesterol biosynthesis and low-density lipoprotein uptake, J Lipid Res, 2014, 55, 02, 226–238, 10.1194/jlr.M043869.

Vickers K.C., MicroRNA-223 coordinates cholesterol homeostasis, Proc Natl Acad Sci U S A, 2014, 111, 040, 14518–14523, 10.1073/pnas.1215767111.

Solly E.L., microRNA as Therapeutic Targets and Clinical Biomarkers in Atherosclerosis, J Clin Med, 2019, 8, 012, e2199, % Replace "e2199"with the correct page range if available. 10.3390/jcm8122199.

Joris V., MicroRNA-199a-3p and MicroRNA-199a-5p Take Part to a Redundant Network of Regulation of the NOS (NO Synthase)/NO Pathway in the Endothelium, Arterioscler Thromb Vasc Biol, 2018, 38, 010, 2345–2357, 10.1161/ATVBAHA.118.311031.

Bao M.H., Protective effects of let-7a and let-7b on oxidized low-density lipoprotein induced endothelial cell injuries, PLoS One, 2014, 9, 09, e106540, 10.1371/journal.pone.0106540.

Chen Z., MicroRNA-98 rescues proliferation and alleviates ox-LDL-induced apoptosis in HUVECs by targeting LOX-1, Exp Ther Med, 2017, 13, 05, 1702–1710, 10.3892/etm.2017.4142.

Zhong X., Downregulation of microRNA-34a inhibits oxidized low-density lipoprotein-induced apoptosis and oxidative stress in human umbilical vein endothelial cells, Int J Mol Med, 2018, 42, 02, 1134–1144, 10.3892/ijmm.2018.3692.

Hsu P.Y., MicroRNA let-7g inhibits angiotensin II-induced endothelial senescence via the LOX-1- independent mechanism, Int J Mol Med, 2018, 41, 04, 2243–2251, 10.3892/ijmm.2018.3414.

Yang S., MicroRNA-216a induces endothelial senescence and inflammation via Smad3/IkappaBalpha pathway, J Cell Mol Med, 2018, 22, 05, 2739–2749, 10.1111/jcmm.13557.

Hou P., Macrophage polarization and metabolism in atherosclerosis, Cell Death Dis, 2023, 14, 010, 691, 10.1038/s41419-023-05989-9.

Chipont A., MicroRNA-21 Deficiency Alters the Survival of Ly-6Clo Monocytes in ApoE(-/-) Mice

and Reduces Early-Stage Atherosclerosis–Brief Report, Arterioscler Thromb Vasc Biol, 2019, 39, 02, 170–177, 10.1161/ATVBAHA.118.311980.

Li B.R., miR-758-5p regulates cholesterol uptake via targeting the CD36 3’UTR, Biochem Biophys Res Commun, 2017, 494, 01–2, 384–389, 10.1016/j.bbrc.2017.10.062.

Lan G., MicroRNA-134 actives lipoprotein lipase-mediated lipid accumulation and inflammatory response by targeting angiopoietin-like 4 in THP-1 macrophages, Biochem Biophys Res Commun, 2016, 472, 03, 410–417, 10.1016/j.bbrc.2016.02.097.

Lacey D.C., Defining GM-CSF-, macrophage-CSF-dependent macrophage responses by in vitro models, J Immunol, 2012, 188, 011, 5752–5765, 10.4049/jimmunol.1103426.

Grootaert M.O. J., Bennett M.R., Vascular smooth muscle cells in atherosclerosis: time for a re-assessment, Cardiovasc Res, 2021, 117, 011, 2326–2339, 10.1093/cvr/cvaa263.

Jiang Y., Yin H., Zheng X.L., MicroRNA-1 inhibits myocardin-induced contractility of human vascular smooth muscle cells, J Cell Physiol, 2010, 225, 02, 506–511, 10.1002/jcp.22237.

Jin H., Local Delivery of miR-21 Stabilizes Fibrous Caps in Vulnerable Atherosclerotic Lesions, Mol Ther, 2018, 26, 04, 1040–1055, 10.1016/j.ymthe.2018.02.004.

Eken S.M., MicroRNA-210 Enhances Fibrous Cap Stability in Advanced Atherosclerotic Lesions, Circ Res, 2017, 120, 04, 633–644, 10.1161/CIRCRESAHA.116.310319.

Shen L., MiR-29b mimics promotes cell apoptosis of smooth muscle cells via targeting on MMP-2, Cytotechnology, 2018, 70, 01, 351–359, 10.1007/s10616-017-0165-1.

Li M., MiR-362-3p inhibits the proliferation and migration of vascular smooth muscle cells in atherosclerosis by targeting ADAMTS1, Biochem Biophys Res Commun, 2017, 493, 01, 270–276, 10.1016/j.bbrc.2017.08.096.

Adam C.A., Novel Biomarkers of Atherosclerotic Vascular Disease–Latest Insights in the Research Field, Int J Mol Sci, 2022, 23, 09, e4567, % Replace "e4567"with the correct page range if available 10.3390/ijms23094567.

Views: 55

How to Cite

The role of microRNA in the pathogenesis of atherosclerosis: new frontiers in research. (2024). CARDIOLOGY OF UZBEKISTAN, 1(1), 43-50. https://doi.org/10.70626/3060-4850-2024-1-1-44-51

Similar Articles

You may also start an advanced similarity search for this article.

ISSN 3060-4850 (Print)