Роль микрорнк в патогенезе атеросклероза: новые горизонты исследований

https://doi.org/10.70626/3060-4850-2024-1-1-44-51
ПОЛНЫЙ ТЕКСТ:

Аннотация

Цель. Исследование направлено на анализ роли микроРНК в патогенезе атеросклероза, с акцентом на их кодирующий потенциал и возможное применение в клинической практике.


Материалы и методы. Проведен обзор современных публикаций, посвященных некодирую- щим молекулам и их связи с атеросклерозом. Использованы данные клинических исследований, посвященных идентификации микроРНК как потенциальных биомаркеров и терапевтических целей.


Результаты. Результаты анализа показывают, что микроРНК могут влиять на ключевые стадии патогенеза атеросклероза, включая воспаление, апоптоз и метаболизм липидов. Их использование как диагностических биомаркеров позволяет повысить эффективность раннего выявления атеросклероза, а их терапевтический потенциал открывает новые горизонты в лечении.


Заключение. МикроРНК представляют собой перспективный инструмент для управления сердечно-сосудистыми заболеваниями. Их дальнейшее изучение необходимо для создания эффективных диагностических и терапевтических подходов.


 

Об авторах

Список литературы

Vaduganathan M., The Global Burden of Cardiovascular Diseases and Risk: A Compass for Future Health, J Am Coll Cardiol, 2022, 80, 025, 2361–2371, 10.1016/j.jacc.2022.09.003.

Libby P., Atherosclerosis, Nat Rev Dis Primers, 2019, 5, 01, 56, 10.1038/s41572-019-0106-z.

Bjorkegren J.L.M., Lusis A.J., Atherosclerosis: Recent developments, Cell, 2022, 185, 010, 1630–1645, 10.1016/j.cell.2022.03.029.

Landmesser U., From traditional pharmacological towards nucleic acid-based therapies for cardiovascular diseases, Eur Heart J, 2020, 41, 040, 3884–3899, 10.1093/eurheartj/ehaa759.

Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello C.C., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature, 1998, 391, 06669, 806–811, 10.1038/35888.

Kim V.N., Han J., Siomi M.C., Biogenesis of small RNAs in animals, Nat Rev Mol Cell Biol, 2009, 10, 02, 126–139, 10.1038/nrm2632.

Ha M., Kim V.N., Regulation of microRNA biogenesis, Nat Rev Mol Cell Biol, 2014, 15, 08, 509–524, 10.1038/nrm3838.

Lee R.C., Feinbaum R.L., Ambros V., The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, 1993, 75, 05, 843–854, 10.1016/0092-8674(93)90529-Y.

Roush S., Slack F.J., The let-7 family of microRNA, Trends Cell Biol, 2008, 18, 010, 505–516, 10.1016/j.tcb.2008.07.007.

Shah A.M., Giacca M., Small non-coding RNA therapeutics for cardiovascular disease, Eur Heart J, 2022, 43, 043, 4548–4561, 10.1093/eurheartj/ehac504.

[11] Christopher A.F., MicroRNA therapeutics: Discovering novel targets and developing specific therapy, Perspect Clin Res, 2016, 7, 02, 68–74, 10.4103/2229-3485.179431.

Friedman R.C., Farh K.K.H., Burge C.B., Bartel D.P., Most mammalian mRNAs are conserved targets of microRNA, Genome Res, 2009, 19, 01, 92–105, 10.1101/gr.082701.108.

Gabisonia K., MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs, Nature, 2019, 569, 07756, 418–422, 10.1038/s41586-019-1191-6.

Karakikes I., Therapeutic cardiac-targeted delivery of miR-1 reverses pressure overload-induced cardiac hypertrophy and attenuates pathological remodeling, J Am Heart Assoc, 2013, 2, 02, e000078, 10.1161/JAHA.112.000078.

Nagpal V., MiR-125b Is Critical for Fibroblast-to-Myofibroblast Transition and Cardiac Fibrosis, Circulation, 2016, 133, 03, 291–301, 10.1161/CIRCULATIONAHA.115.018531.

Lam J. K., siRNA Versus miRNA as Therapeutics for Gene Silencing, Mol Ther Nucleic Acids, 2015, 4, 09, e252, 10.1038/mtna.2015.23.

Romaine S.P., microRNA in cardiovascular disease: an introduction for clinicians, Heart, 2015, 101, 012, 921–928, 10.1136/heartjnl-2013-305402.

Dec A., Inclisiran—A Revolutionary Addition to a Cholesterol-Lowering Therapy, Int J Mol Sci, 2023, 24, 07, e7245, % If page number is available, replace "e7245"with the actual page range. 10.3390/ijms2407245

% Add DOI if available.

Hajar R., PCSK 9 Inhibitors: A Short History and a New Era of Lipid-lowering Therapy, Heart Views, 2019, 20, 02, 74–75, 10.4103/HEARTVIEWS.HEARTVIEWS_67_19.

Abifadel M., Mutations in PCSK9 cause autosomal dominant hypercholesterolemia, Nat Genet, 2003, 34, 02, 154–156, 10.1038/ng1161.

Kaddoura R., Orabi B., Salam A.M., PCSK9 Monoclonal Antibodies: An Overview, Heart Views, 2020, 21, 02, 97–103, 10.4103/HEARTVIEWS.HEARTVIEWS_93_20.

Cowart K., Singleton J., Carris N.W., Inclisiran for the Treatment of Hyperlipidemia and for Atherosclerotic Cardiovascular Disease Risk Reduction: A Narrative Review, Clin Ther, 2023, 45, 011, 1099–1104, 10.1016/j.clinthera.2023.07.014.

Glass C.K., Witztum J.L., Atherosclerosis: The Road Ahead, Cell, 2001, 104, 04, 503–516, 10.1016/S0092-8674(01)00238-0.

Esau C., miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting, Cell Metab, 2006, 3, 02, 87–98, 10.1016/j.cmet.2006.01.005.

Shao W., Espenshade P.J., Sterol regulatory element-binding protein (SREBP) cleavage regulates Golgi- to-endoplasmic reticulum recycling of SREBP cleavage-activating protein (SCAP), J Biol Chem, 2014, 289, 011, 7547–7557, 10.1074/jbc.M113.533240.

Yang M., Identification of miR-185 as a regulator of de novo cholesterol biosynthesis and low-density lipoprotein uptake, J Lipid Res, 2014, 55, 02, 226–238, 10.1194/jlr.M043869.

Vickers K.C., MicroRNA-223 coordinates cholesterol homeostasis, Proc Natl Acad Sci U S A, 2014, 111, 040, 14518–14523, 10.1073/pnas.1215767111.

Solly E.L., microRNA as Therapeutic Targets and Clinical Biomarkers in Atherosclerosis, J Clin Med, 2019, 8, 012, e2199, % Replace "e2199"with the correct page range if available. 10.3390/jcm8122199.

Joris V., MicroRNA-199a-3p and MicroRNA-199a-5p Take Part to a Redundant Network of Regulation of the NOS (NO Synthase)/NO Pathway in the Endothelium, Arterioscler Thromb Vasc Biol, 2018, 38, 010, 2345–2357, 10.1161/ATVBAHA.118.311031.

Bao M.H., Protective effects of let-7a and let-7b on oxidized low-density lipoprotein induced endothelial cell injuries, PLoS One, 2014, 9, 09, e106540, 10.1371/journal.pone.0106540.

Chen Z., MicroRNA-98 rescues proliferation and alleviates ox-LDL-induced apoptosis in HUVECs by targeting LOX-1, Exp Ther Med, 2017, 13, 05, 1702–1710, 10.3892/etm.2017.4142.

Zhong X., Downregulation of microRNA-34a inhibits oxidized low-density lipoprotein-induced apoptosis and oxidative stress in human umbilical vein endothelial cells, Int J Mol Med, 2018, 42, 02, 1134–1144, 10.3892/ijmm.2018.3692.

Hsu P.Y., MicroRNA let-7g inhibits angiotensin II-induced endothelial senescence via the LOX-1- independent mechanism, Int J Mol Med, 2018, 41, 04, 2243–2251, 10.3892/ijmm.2018.3414.

Yang S., MicroRNA-216a induces endothelial senescence and inflammation via Smad3/IkappaBalpha pathway, J Cell Mol Med, 2018, 22, 05, 2739–2749, 10.1111/jcmm.13557.

Hou P., Macrophage polarization and metabolism in atherosclerosis, Cell Death Dis, 2023, 14, 010, 691, 10.1038/s41419-023-05989-9.

Chipont A., MicroRNA-21 Deficiency Alters the Survival of Ly-6Clo Monocytes in ApoE(-/-) Mice

and Reduces Early-Stage Atherosclerosis–Brief Report, Arterioscler Thromb Vasc Biol, 2019, 39, 02, 170–177, 10.1161/ATVBAHA.118.311980.

Li B.R., miR-758-5p regulates cholesterol uptake via targeting the CD36 3’UTR, Biochem Biophys Res Commun, 2017, 494, 01–2, 384–389, 10.1016/j.bbrc.2017.10.062.

Lan G., MicroRNA-134 actives lipoprotein lipase-mediated lipid accumulation and inflammatory response by targeting angiopoietin-like 4 in THP-1 macrophages, Biochem Biophys Res Commun, 2016, 472, 03, 410–417, 10.1016/j.bbrc.2016.02.097.

Lacey D.C., Defining GM-CSF-, macrophage-CSF-dependent macrophage responses by in vitro models, J Immunol, 2012, 188, 011, 5752–5765, 10.4049/jimmunol.1103426.

Grootaert M.O. J., Bennett M.R., Vascular smooth muscle cells in atherosclerosis: time for a re-assessment, Cardiovasc Res, 2021, 117, 011, 2326–2339, 10.1093/cvr/cvaa263.

Jiang Y., Yin H., Zheng X.L., MicroRNA-1 inhibits myocardin-induced contractility of human vascular smooth muscle cells, J Cell Physiol, 2010, 225, 02, 506–511, 10.1002/jcp.22237.

Jin H., Local Delivery of miR-21 Stabilizes Fibrous Caps in Vulnerable Atherosclerotic Lesions, Mol Ther, 2018, 26, 04, 1040–1055, 10.1016/j.ymthe.2018.02.004.

Eken S.M., MicroRNA-210 Enhances Fibrous Cap Stability in Advanced Atherosclerotic Lesions, Circ Res, 2017, 120, 04, 633–644, 10.1161/CIRCRESAHA.116.310319.

Shen L., MiR-29b mimics promotes cell apoptosis of smooth muscle cells via targeting on MMP-2, Cytotechnology, 2018, 70, 01, 351–359, 10.1007/s10616-017-0165-1.

Li M., MiR-362-3p inhibits the proliferation and migration of vascular smooth muscle cells in atherosclerosis by targeting ADAMTS1, Biochem Biophys Res Commun, 2017, 493, 01, 270–276, 10.1016/j.bbrc.2017.08.096.

Adam C.A., Novel Biomarkers of Atherosclerotic Vascular Disease–Latest Insights in the Research Field, Int J Mol Sci, 2022, 23, 09, e4567, % Replace "e4567"with the correct page range if available 10.3390/ijms23094567.

Просмотров: 56

Как цитировать

Роль микрорнк в патогенезе атеросклероза: новые горизонты исследований. (2024). КАРДИОЛОГИЯ УЗБЕКИСТАНА, 1(1), 43-50. https://doi.org/10.70626/3060-4850-2024-1-1-44-51

Похожие статьи

Вы также можете начать расширеннвй поиск похожих статей для этой статьи.

ISSN 3060-4850 (Print)